Reactive cold sintering

Dr Rebecca Boston

Lloyd's Register Foundation and Royal Academy of Engineering Research Fellow University of Sheffield, UK World Materials Research Institute Forum Early Career Scientist Summit NPL, June 2018

The long history of ceramics

Venus of Dolní Věstonice, c. 25,000-29,000 BCE

Greek vase, c. 680-420 BCE

Multilayer ceramic capacitor, 2017

Ceramics in modern technology

- Sintered ceramics are everywhere
- Often we lose properties due to
- the required sintering temperatures
- Energy intensive/expensive

Frit- car windscreens would never break except the frit has to be sintered on which reduces strength

Multilayer ceramic capacitor Doped $BaTiO_3$, Ni electrodes Sinter at 1300 °C in argon Sintered Pb(Zr,Ti)O₃ in headphones, accelerometers >1250 °C

grain

network of open pores

International Consortium of Nanotechnologies ICO

Grind

The sintering process

grain

₽

òpen pore

neck-

Slow

Current limitations

High energy cost

High temperatures required to achieve densification

Slow ramp rates (avoids cracking) and long hold times

 Incompatible with polymers/electrodes

 Uncontrolled grain growth High temperatures exclude many materials

No opportunity to retain/optimise nanostructure

Cold sintering

J. Guo et al, Angew. Chem., 55 (2016) 11457

Cold sintering

Terrace-ledge-kink mechanism

J. Guo et al, Angew. Chem., 55 (2016) 11457

Cold sintering: concepts

What happens if your material is not soluble?

Reactive cold sintering

Any strontium titanate powder?

Nanoscale SrTiO₃ synthesis

R. Boston et al, *Inorg. Chem.* 2017, R Boston et al. *RSC Adv. 2018*

Intermediate phase interactions

R. Boston et al, in preparation

Strontium titanate- nanoscale

>97 % dense at 950 °C (1400 °C is normal sintering temperature)

R. Boston et al, RSC Adv. 2018

Strontium titanate- micron scale

>96 % dense at 950 °C (1400 °C is normal sintering temperature)

Starting powder

Infill phase

Permittivity

Lower high-temperature losses

R. Boston et al, RSC Adv. 2018

Cold sintering: the future

I M Reaney et al, after Randall et al, 2016-17

D Wang et al, submitted Adv. Func. Mater., 2017

Summary

- Cold sintering now demonstrated for a wide range of materials
- · Potential to unlock new composite materials
 - Ceramic-ceramic
 - Ceramic-polymer
 - Ceramic-metal
- Original cold sintering limited to soluble materials
- Reactive intermediate phase cold sintering has wider applications
 - Any size or quality of powder
 - Easy creation of ceramic-ceramic composites
- Route to sustainable sintering of ceramics
- Still exploring the applications and possibilities

Acknowledgements

- Dr Jing Guo (Penn State University, USA)
- Prof Clive Randall (Penn State University, USA)
- Prof Ian Reaney (University of Sheffield, UK)
- Centre for Dielectrics and Piezoelectrics

Funders

- Lloyd's Register Foundation
- Royal Academy of Engineering
- EPSRC

Initial discoveries

ρ 95.5 %	ρ93 %	ρ94.1 %
ε _r 5.61 (5.5)	ε _r 13.4 (12.9)	ε _r 9.8 (7.5)

120 °C and 350 MPa for 15 min followed by 6h at 120 °C anneal

J. Guo et al, Angew. Chem., 55 (2016) 11457

Mechanism

- Terrace ledge kink model for crystal growth
- Amorphous phase attributed to rate of solute condensation
- Step edges thermodynamically favourable for surface diffusion

Congruent vs incongruent materials

- Not all materials solubilise in the same way
- Sr can solubilise from lattice
- Forms Ti-rich glass
- Blocks TLK growth
- Prevents cold sintering

